Evaluating the effect of neighbourhood weight matrices on smoothing properties of Conditional Autoregressive (CAR) models
نویسندگان
چکیده
BACKGROUND The Conditional Autoregressive (CAR) model is widely used in many small-area ecological studies to analyse outcomes measured at an areal level. There has been little evaluation of the influence of different neighbourhood weight matrix structures on the amount of smoothing performed by the CAR model. We examined this issue in detail. METHODS We created several neighbourhood weight matrices and applied them to a large dataset of births and birth defects in New South Wales (NSW), Australia within 198 Statistical Local Areas. Between the years 1995-2003, there were 17,595 geocoded birth defects and 770,638 geocoded birth records with available data. Spatio-temporal models were developed with data from 1995-2000 and their fit evaluated within the following time period: 2001-2003. RESULTS We were able to create four adjacency-based weight matrices, seven distance-based weight matrices and one matrix based on similarity in terms of a key covariate (i.e. maternal age). In terms of agreement between observed and predicted relative risks, categorised in epidemiologically relevant groups, generally the distance-based matrices performed better than the adjacency-based neighbourhoods. In terms of recovering the underlying risk structure, the weight-7 model (smoothing by maternal-age 'Covariate model') was able to correctly classify 35/47 high-risk areas (sensitivity 74%) with a specificity of 47%, and the 'Gravity' model had sensitivity and specificity values of 74% and 39% respectively. CONCLUSION We found considerable differences in the smoothing properties of the CAR model, depending on the type of neighbours specified. This in turn had an effect on the models' ability to recover the observed risk in an area. Prior to risk mapping or ecological modelling, an exploratory analysis of the neighbourhood weight matrix to guide the choice of a suitable weight matrix is recommended. Alternatively, the weight matrix can be chosen a priori based on decision-theoretic considerations including loss, cost and inferential aims.
منابع مشابه
Spatial autoregressive models for statistical inference from ecological data
Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network-based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inferen...
متن کاملConditional Autoregressions with Doubly Stochastic Weight Matrices
A conditional spatial autoregression (CAR) specifies dependence via a weight matrix. Employing a doubly stochastic weight matrix allows users to interpret the CAR prediction rule as a semiparametric prediction rule and as BLUP with smoothing in addition to other benefits. We examine standard and doubly stochastic weight matrices in the context of an illustrative data set to demonstrate feasibil...
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملPrediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...
متن کاملPrediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Health Geographics
دوره 6 شماره
صفحات -
تاریخ انتشار 2007